Given points are (3,4,−7) and (1,−1,6)
Position vector of the point are →a=3^i+4^j−7^k and →b=^i−^j+6^k
Vector equation of aline passing through the point→aand→b is given by:
→r=→a+λ(→b−→a)
⇒→r=3^i+4^j−7^k+λ[(^i−^j+6^k)−(3^i+4^j−7^k)]
Substituing →r=x^i+y^j+z^k
⇒x^i+y^j+z^k=3^i+4^j−7^k+λ(−2^i−5^j+13^k)
∴(x−3)^i+(y−4)^j+(z+7)^k=λ(−2^i−5^j+13^k)
Hence , the equation of line in vector form is
∴(x−3)^i+(y−4)^j+(z+7)^k=λ(−2^i−5^j+13^k)