The vector equation of the plane passes through the points A&B with position vector 2^i+^j−^k & −^i+3^j+4^k respectively & ⊥er to the plane ¯¯¯r.(^i−2^j+4^k)=10 is
A
¯¯¯r.(18^i+17^j−3^k)=49
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
¯¯¯r.(18^i−17^j−3^k)+22=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯¯¯r.(18^i+17^j+4^k)=25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯¯¯r.(18^i+17^j+4^k)=24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯¯¯r.(18^i+17^j−3^k)=49 The required plane passes through the points A(2^i+^j−^k)andB(−^i+3^j+4^k) ∴¯¯¯¯¯¯¯¯AB=¯¯¯¯¯¯¯¯OB−¯¯¯¯¯¯¯¯OA=−3^i+2^j+5^k Again the required, plane is ⊥er to the plane ¯¯¯r⋅(^i−2^j+4^k)=10 ∴¯¯¯n1=^i−2^j+4^k Let ¯¯¯n be the normal to the desired plane, then ¯¯¯n=¯¯¯n1ׯ¯¯¯¯¯¯¯AB=∣∣
∣∣ijk1−24−325∣∣
∣∣=−18^i−17^j−4^k Now equation of the plane through A(2^i+^j−^k) & normal to vector ¯¯¯n is ¯¯¯r⋅¯¯¯n=¯¯¯a⋅¯¯¯n ⇒¯¯¯r⋅(−18^i−17^j−4^k)=(2^i+^j−^k)⋅(−18^i−17^j−4^k) ⇒¯¯¯r⋅(18^i+17^j+4^k)=49 Hence Choice (A) is correct.