The vector equation of the plane through the point ^i+2^j−^k & perpendicular to the line of intersection of the planes ¯¯¯r.(3^i−^j+^k)=1 and ¯¯¯r.(^i+4^j−2^k)=2 is
A
¯¯¯r.(2^i+7^j−13^k)=29
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
¯¯¯r.(2^i−7^j−13^k)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
¯¯¯r.(2^i−7^j−+3^k)=25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
¯¯¯r.(2^i+7^j−+3^k)=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯¯¯r.(2^i−7^j−13^k)=1 The line of intersection of planes ¯¯¯r⋅(3^i−^j+^k)=1 and ¯¯¯r⋅(^i+4^j−2^k)=2 is common to both the planes, so line of intersection is ⊥er to the nonnal to the two planes i.e. ¯¯¯n1=3^i−^j+^kand¯¯¯n2=^i+4^j−2^k Hence it is parallel to the vector ¯¯¯n1ׯ¯¯n2 where ¯¯¯n1ׯ¯¯n2=∣∣
∣
∣∣^i^j^k3−1114−2∣∣
∣
∣∣=−2^i+7^j+13^k
Now required plane (¯¯¯r−¯¯¯a)⋅¯¯¯n=0;→a=^i+2^j−^k;→n=−2^i+7^j+13^k ⇒¯¯¯r⋅¯¯¯n=¯¯¯a⋅¯¯¯n ⇒¯¯¯r⋅(−2^i+7^j+13^k)=−1 ⇒¯¯¯r⋅(2^i−7^j−13^k)=1 Hence (B) is correct choice.