Let ^c=x^i+y^j+z^k. where x2+y2+z2=1......(2)
And unit vector along 3^i+4^j=3^i+4^j√32+44=3^i+4^j5
The bisectors of these two is given by
r=t(^a+^b)
⇒r=t(x^i+y^j+z^k+3^i+4^j5)
⇒r=t5((5x+3)^i+(5y+4)^j+5^k) ..... (2)
But the bisector is given by −^i+^j−^k ........ (3)
Comparing (2) and (3), we get,
t5(5x+3)=−1⇒x=−5+3t5t
t5(5y+4)=1⇒y=5−4t5t
t5=−1⇒z=−1t
Put all the value in equation (1), we have,
(−5+3t5t)2+(5−4t5t)2+(−1t)2=1
⇒25+9t2+30t+25+16t2−40t+2525t2=1
⇒25t2−10t+75=25t2
⇒t=7.5
Thus,
x=−5+3t5t⇒x=−5+3×7.55×7.5=−5+22.537.5=−1115
y=5−4t5t⇒y=5−4×7.55×7.5=5−3037.5=−1015
z=−1t⇒z=−17.5=−215
hence, ^c=−1115^i−1015^j−215^k