The correct option is B 10^i+10^j+5^k3
Let the vector be
→A=a^i+b^j+c^k
a2+b2+c2=25 ⋯(1)
→A.→B=0
⇒(2^i−3^j+2^k).(a^i+b^j+c^k)=0
⇒2a−3b+2c=0 ⋯(2)
Also, cosθ1=cosθ2 where θ1and θ2 are the angles made by →A with X-axis and Y-axis respectively.
⇒(a^i+b^j+c^k).(x^i)5|x|=(a^i+b^j+c^k).(y^j)5|y|
⇒a=b
Putting this value in eqn (2), we get
c=12a
Putting this value in eqn (1), we get
a2+a2+14a2=25
⇒94a2=25
⇒a=±103
Hence, the required vector is
→A=±(10^i+10^j+5^k3)