The correct option is D 1√2(−^i+2^j−^k)
Let the new vector be,−−→OQ=α^i+β^j+γ^k
Given −−→OP,−−→OQ,^j are coplanar.
∴∣∣
∣∣111αβγ010∣∣
∣∣=0
⇒1(0−γ)−1(0)+1(α)=0
⇒γ=α ..........(1)
−−→OP⊥−−→OQ
⇒α+β+γ=0,β=−2γ ................. (2)
∣∣∣−−→OQ∣∣∣=∣∣∣−−→OP∣∣∣⇒α2+β2+γ2=3
α=±1√2 where α=γ from (1)
⇒−−→OQ=−1√2(^i−2^j+^k)
where coefficient of ^j>0
∴ its new position is at −1√2(^i−2^j+^k)