The correct option is B 1,−13
let,V=T+2¯y+2k|V|=√1+4x2+4And,U=√2T+(2x+2)y+(6x−2)k|U|=√4+4(x+1)2+4(3x−1)2Accordingtothecondition:2|V|=|U|⇒2(√1+4x2+4)=√4+4(x+1)2+4(3x−1)2⇒22(1+4x2+4)=4+4(x+1)2+4(3x−1)2⇒4(5+4x2)=4[1+(x+1)2+(3x−1)2]⇒(5+4x2)=1+(x+1)2+(3x−1)2⇒(5+4x2)=1+x2+1+2x+9x2+1−6x⇒5+4x2=3+10x2−4x⇒6x2−4x−2=0⇒(x−1)(6x+2)=0∴x=1,−26=−13x=1,−13sothatthecorrectoptionisC.