The vectors a→ and b→ are not perpendicular and c→ and d→ are two vectors satisfyingb→×c→=b→×d→ and a→·d→=0. Then, the vector d→ is equal to?
c→+a→·c→a→·d→b→
b→+b→·c→a→·b→c→
c→-a→·c→a→·b→b→
b→-b→·c→a→·b→c→
Explanation for correct option
The vectors a→ and b→ are not perpendicular
So, a→.b→≠0
Given, a→.d→=0
b×c=b×d∴a→×(b→×c→)=a→×(b→×d→)⇒(a→·c→)b→–(a→·b→)c→=(a→·d)b→–(a→·b→)d→⇒(a→·b→)d→=-(a→.c→)b→+(a→.b→)c→⇒d→=c→-a→.c→a→·b→b→
Hence, option (C) is correct