wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vectors a and b satisfy the equations 2a +b =p and a +2b =q ,where p =i^+j^ and q =i^-j^. If θ is the angle between a and b , then
(a) cos θ=45

(b) sin θ=12

(c) cos θ=-45

(d) cos θ=-35

Open in App
Solution

(c) cos θ=-45

Given that2a+b=p ... 1a+2b=q ... 2Solving these two we geta=2p-q3, b=2q-p3And we havep=i^+j^ and q=i^-j^Substituting the values of p and q, we geta=2p-q3=2i^+j^-i^-j^3 =i^+3j^3a=131+9=103b=2q-p3=2i^-j^-i^+j^3=i^-3j^3b=131+9=103a. b=19 1-9=-89We know thata. b=a b cos θ-89=103×103 cos θ-89=109cos θcos θ=-89×910=-45

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Napier’s Analogy
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon