Suppose the particle is projected with velocity u at an
angle θ with the horizontal. Horizontal
component of its velocity at all height will be u cosθ.
At the greatest height, the vertical component of velocity is zero, so the resultant velocity is
v1=ucosθ
At half the greatest height during upward motion,
y=h/2,
ay=−g,
uy=usinθ
Using v2y−u2y=2ayy
we get, v2y−u2sin2θ=2(−g)h2
or v2y=u2sin2θ−g×u2sin2θ2g=u2sin2θ2 [∵h=u2sin2θ2g]
or vy=usinθ√2
Hence, resultant velocity at half of the greatest height is
v2=√v2x+v2y
=√u2cos2θ+u2sin2θ2
Given, v1v2=√25
∴v21v22=u2cos2θu2cos2θ+u2sin2θ2=25
or 11+12tan2θ=25
or 2+tan2θ=5ortan2θ=3
or tanθ=√3
∴θ=60∘