The velocity profile in fully developed laminar flow in a pipe of diameter D is given by u=u0(1−4r2/D2), where r is the radial distance from the center. If the viscosity of the fluid is μ, the pressure drop across a length L of the pipe is
A
μu0LD2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4μu0LD2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8μu0LD2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
16μu0LD2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D16μu0LD2 Method I:
Given velocity profile,
u=u0(1−4r2D2)
At r = 0, u = umax ∴umax=u0
We know that the pressure drop across a length L of the pipe,
p1−p2=32μ¯uLD2
where ¯u = Average velocity
¯u=umax2=u02
∴p1−p2=32μu0L2×D2=16μu0LD2
Method II:
For the laminar flow through circular pipe,
Shear stress,