The correct option is D (−13,143)
Given quadratic expression: y=3x2+2x+5
On comparing with the standard form of quadratic expression y=ax2+bx+c, we get:
a=3,b=2,c=5& D=b2−4ac=(2)2−4⋅3⋅5=−56
a>0⇒ The parabola is upward opening.
The coordinates of the vertex will be given as:
(−b2a,−D4a)
Substituting the values of a,b & D in the equation, we get the coordinates of the vertex as:
V≡(−b2a,−D4a)≡(−26,−(−56)12)≡(−13,143)
⇒V≡(−13,143)