tanα=3tanβ⇒sinαcosα=3sinβcosβ ...(1)
A) From (1)
sinαcosβ=3sinβcosα⇒−3sinαcosβ+sinαcosβ=3sinβcosα−3sinαcosβ⇒−2sinαcosβ=−3sin(α−β)⇒sinαcosβ=34⇒4sinαcosβ=3
B) From (1)
sinαcosβ=3sinβcosα⇒sinαcosβ−sinβcosα=2sinβcosα⇒sin(α−β)=2sinβcosα⇒sinβcosα=14⇒4sinβcosα=1
sinαcosβ+sinβcosα=34+14=1⇒sin(α+β)=1⇒α+β=90
As α−β=30, gives α=60
C) 2sinα=2√32=√3
D) 4tanα2=4√3