wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vertices of a ΔABC are A (4, 6), B (1, 5) and C (7, 2). A line is drawn to intersect sides AB and AC at D and E respectively, such that. Calculate the area of the ΔADE and compare it with the area of ΔABC. (Recall Converse of basic proportionality theorem and Theorem 6.6 related to

ratio of areas of two similar triangles)

Open in App
Solution

Given that,

Therefore, D and E are two points on side AB and AC respectively such that they divide side AB and AC in a ratio of 1:3.

Clearly, the ratio between the areas of ΔADE and ΔABC is 1:16.

Alternatively,

We know that if a line segment in a triangle divides its two sides in the same ratio, then the line segment is parallel to the third side of the triangle. These two triangles so formed (here ΔADE and ΔABC) will be similar to each other.

Hence, the ratio between the areas of these two triangles will be the square of the ratio between the sides of these two triangles.

Therefore, ratio between the areas of ΔADE and ΔABC =


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction - concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon