The vertices of a ΔABC are A(4, 6), B(1, 5) and C(7, 2). A line is drawn to intersect sides AB and AC at D and E respectively, such that ADAB=AEAC=14. Calculate the ratio of the area of the ΔADE and ΔABC.
A
2 : 9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2 : 15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3 : 16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1 : 16
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D 1 : 16
We have, ADAB=14⇒ABAD=41⇒AD+DBAD=41ADAD+DBAD=1+31⇒1+DBAD=1+31DBAD=31⇒AD:DB=1:3
Thus, the point D divides AB in the ratio 1 : 3 By section formula (x,y)=(mx2+nx1m+n,my2+ny+1m+n)∴D(x,y)=((1×1)+(3×4)1+3,(1×5)+(3×6)1+3)=(1+124,5+184)=(134,234)
Similarly, AE : EC=1 : 3 i.e., E divides AC in the ratio 1 : 3 E(x,y)=((1×7)+(3×4)1+3,1×2+3×61+3)=(7+124,2+184)=(194,5)
Now, ar(△ADE) =12[4(234−5)+134(5−6)+194(6−234)]=12[(23−20)+134(−1)+194(24−234)]=12(3−134+1916)=12[48−52+1916]ar(△ADE)=1532sq. units
ar(△ABC)=12[4(5−2)+1(2−6)+7(6−5)]=12[(4×3)+1(−4)+7×1]=12[12+(−4)+7]=12(15)ar(△ABC)=152sq. units Now, ar(△ADE)ar(△ABE)=1532152=1532×215=116 ∴ar(ΔADE):ar(ΔABC)=1:16