wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vertices of a ΔABC are A(4, 6), B(1, 5) and C(7, 2). A line is drawn to intersect sides AB and AC at D and E respectively, such that
ADAB=AEAC=14. Calculate the ratio of the area of the ΔADE and ΔABC.

A
2 : 9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2 : 15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3 : 16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1 : 16
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 1 : 16


We have,
ADAB=14ABAD=41AD+DBAD=41ADAD+DBAD=1+311+DBAD=1+31DBAD=31AD:DB=1:3

Thus, the point D divides AB in the ratio 1 : 3
By section formula (x, y)=(mx2+nx1m+n, my2+ny+1m+n)D(x, y)=((1×1)+(3×4)1+3,(1×5)+(3×6)1+3) =(1+124,5+184)=(134,234)

Similarly, AE : EC=1 : 3 i.e., E divides AC in the ratio 1 : 3
E(x, y)=((1×7)+(3×4)1+3,1×2+3×61+3) =(7+124,2+184)=(194,5)

Now, ar(ADE)
=12[4(2345)+134(56)+194(6234)]=12[(2320)+134(1)+194(24234)]=12(3134+1916)=12[4852+1916]ar(ADE)=1532 sq. units

ar(ABC)=12[4(52)+1(26)+7(65)]=12[(4×3)+1(4)+7×1]=12[12+(4)+7]=12(15)ar(ABC)=152 sq. units
Now, ar(ADE)ar(ABE)=1532152=1532×215=116
ar(ΔADE):ar(ΔABC)=1:16

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area from Coordinates
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon