The vertices of a ΔABC are A(4, 6), B(1, 5) and C(7, 2). A line is drawn to intersect sides AB and AC at D and E respectively, such that
ADAB=AEAC=14. Calculate the ratio of the area of the ΔADE and ΔABC.
1 : 16
We have,
ADAB=14⇒ABAD=41⇒AD+DBAD=41⇒ADAD+DBAD=41=1+31⇒1+DBAD=1+31⇒DBAD=31⇒AD:DB=1:3
Thus, the point D divides AB in the ratio 1 : 3
∴ The coordinates of D are:
[(1×1)+(3×4)1+3,(1×5)+(3×6)1+3]
or [1+124,5+184] or (134,234)
Similarly, AE : EC=1 : 3 i.e., E divides AC inthe ratio 1 : 3
⇒ Coordinates of E are
[(1×7)+(3×4)1+3,1×2+3×61+3]
or [7+124,2+184] or [194,5]
Now, ar(ΔADE)
=12[4(234−5)+134(5−6)+194(6−234)]=12[(23−20)+134(−1)+194(24−234)]=12(3−134+1916)=12[48−52+1916]=1532 sq.units
Area of ΔABC=12[4(5−2)+1(2−6)+7(6−5)]=12[(4×3)+1(−4)+7×1]=12[12+(−4)+7]=12(15)=152 sq.units
Now, ar(ΔADE)ar(ΔABE)=1532152=1532×215=116
⇒ar(ΔADE):ar(ΔABC)=1:16