wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vertices of a triangle arc A(5,4,6),B(1,1,3) and C(4,3,2). The internal bisector of BAC meets BC in D. Find AD.

Open in App
Solution

Solution -
REF. Image
Vertices of triangle are A(5,4,6),B(1,1,3),C(4,3,2)
AB=4^i5^j3^k
AC=^i^j4^k
AB=52
AC=32
AD=ACcosθ -(1)
AB.AC=ABACcos2θ
4+5+12=(52)(32)cos2θ
cos2θ=2130=710
cos2θ=12cos2θ
cosθ=1+cos2θ2= 1+7102=12175
AD=ACcosθ=322175=15310
AD=15310(^AB+^AC2)=15340(^AB+^AC)
AD=15340[(4^j5^j3^k)52+C^i^j4^k32]
AD=15380[17^i20^j29^k15]

1061209_1115494_ans_c3131c4bb4a141caaf924a1cc17d9042.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon