wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vertices of a triangle are A(x1,x1tanθ1),B(x2,x2tanθ2) & C(x3,x3tanθ3). If the circumcentre O of the ABC is at the origin & H(¯¯¯x,¯¯¯y) be its orthocentre, then ¯¯¯x¯¯¯y=

A
cosθ1cosθ2cosθ3sinθ1+sinθ2+sinθ3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cosθ1+cosθ2+cosθ3sinθ1+sinθ2+sinθ3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos2θ1+cos2θ2+cos2θ3sin2θ1+sin2θ2+sin2θ3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cosθ1cosθ2+cosθ3sinθ1sinθ2+sinθ3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B cosθ1+cosθ2+cosθ3sinθ1+sinθ2+sinθ3
Circumcentre is origin
OA2=OB2=OC2
x21+x21tan2θ1=x22+x22tan2θ2
=x23+x23tan2θ3=r2
x1=rcosθ1,x2=rcosθ2,x3=rcosθ3
Co-ordinate of vertices of the triangle become
A(rcosθ1,rsinθ1),B(rcosθ2,rsinθ2),C(rcosθ3,rsinθ3)
x=rcosθ13,y=rsinθ13
Now, x=¯¯¯x3
¯¯¯x=r(cosθ1+cosθ2+cosθ3)
¯¯¯y=r(sinθ1+sinθ2+sinθ3)
¯¯¯x¯¯¯y=cosθ1+cosθ2+cosθ3sinθ1+sinθ2+sinθ3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solution of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon