The vertices of a variable triangle are (3,4), (5cosθ,5sinθ), and (5sinθ,−5cosθ), where θϵR. then the locus of its orthocenter is
We have,
A(x1,y1)=(3,4)
B(x2,y2)=(5cosθ,5sinθ)
C(x3,y3)=(5sinθ,−5cosθ)
Where θ∈R
Let O be the origin then it is equidistant from the vertices of ΔABC
Now,
OA=√(3−0)2+(4−0)2
OA=5
OB=√(5cosθ−0)2+(5sinθ−0)2
=√25cos2θ+25sin2θ
=√25(sin2θ+cos2θ)
OB=5
OC=√(5sinθ−0)2+(−5cosθ−0)2
=√25sin2θ+25cos2θ
=√25
OC=5
So, We can conclude that, O(0,0) is the circumcenter of ΔABC
Let H(h,k) be the orthocenter of ΔABC.
The centroid G is given by,
Coordinate of G=(3+5cosθ+5sinθ3,4+5sinθ−5cosθ3).......(1)
We note that, Centroid G divides the line joining the orthocenter H(h,k) and circumcentre O(0,0) in the ratio 2:1.
Using section formula, we get,
Coordinate of G=(h3,k3)……. (2)
By equation (1) and (2) to and we get,
h=3+5cosθ+5sinθ
k=4+5sinθ−5cosθ
This further implies that,
h−3=5cosθ+5sinθ
k−4=5sinθ−5cosθ
Squaring both side and we get,
(h−3)2+(k−4)2=(5cosθ+5sinθ)2+(5sinθ−5cosθ)2
(h−3)2+(k−4)2=25cos2θ+25sin2θ+50sinθcosθ+25cos2θ+25sin2θ−50sinθcosθ
(h−3)2+(k−4)2=50(sin2θ+cos2θ)
(h−3)2+(k−4)2=50.
So the locus of orthocenter is,
(x−3)2+(y−4)2=50
Hence, this is the answer.