The vertices of ΔABC=areA(4,6),B(1,5)andC(7,2). A line is drawn to intersect sides AB and AC at D and E respectively such that ADAB=AEAC=14 . Calculate the area of ΔADE and compare it with the area of ΔABC
Concept:
Application:
We have,
ADAB=AEAC=14
⇒ABAD=ACAE=4
⇒AD+DBAD=AE+ECAE=4
⇒1+DBAD=1+ECAE=4
⇒DBAD=ECAE=3
⇒ADDB=AEEC=13
⇒AD:DB=AE:EC=1:3
D and E divide AB and AC respectively in the ratio 1 : 3.
So, the co-ordinates of D and E are
(1+121+3,5+181+3)=(134,234) and (7+121+3,2+181+3)=(194,5) respectively.
We have,
∴ Area of ΔADE
=12|(4×234+134×5+194×6)−(134×6+194×234+4×5)|
⇒Area of ΔADE=12∣∣(924+654+1144)−(784+43716+20)∣∣
⇒Area of ΔADE=12∣∣2714−106916∣∣
=1532 sq.units.
Also, we have
∴Area of ΔABC
=12|(4×5+1×2+7×6)−(1×6+7×5+4×2)|
⇒Area of ΔABC=12|(20+2+42)−(6+35+8)|
⇒Area of ΔABC=12|64−49|=152sq. units
∴Area of ΔADEArea of ΔABC=1532152=116
Hence, Area of ΔADE : Area of ΔABC = 1 : 16.