The vertices of △ABC are (−2,1),(5,4) and (2,−3) respectively. Find the area of the triangle and the length of the altitude through A.
Open in App
Solution
We will use the formula to find the area of the triangle when all three coordinates are given,
A=12[y1(x2−x3)+y2(x3−x1)+y3(x1−x2)]=12[1(5−2)+4(2+2)−3(−2−5)]=12[3+4×4−3×−7]=12(3+16+21)=12×40=20 sq. units
But as we know the area of a triangle is equal to half of the product of base and height. So, if we assume base as BC then the height will be equal to the length of the altitude from the vertex A.