The correct option is A 73 cm2/sec.
Let x be the length of an edge of the cube, V be the volume and S be the surface area at any time t. Then, V=x3 and S=6x2.It is given that dVdt=7 cm3/sec.⇒ddt(x3)=7⇒3x2dxdt=7⇒dxdt=73x2Now, S=6x2⇒dSdt=12xdxdt⇒dSdt=12x×73x2=28x⇒(dSdt)x=12=2812 cm2/sec.=73 cm2/sec.