Let the side of cube be x unit
∴ Volume of cube (V)=x3
On differentiating both side w.r.t. t we get
dVdt=3x2dxdt=k [constant ]
⇒dxdt=k3x2....(i)
Also surface area of cube S=6x2
On differentiating w.r.t.r, we get
dSdt=12x.dxdt
⇒dSdt=12x.k3x2 [using eq (i) ]
⇒dSst=12k3x=4(kx)
⇒dSdtα1x
hence the surface area of the cube varies inversely as the length of the side.