The correct option is
A (5,52)The line
x+y=2 meets the ellipse
x2+2y2=10 in points A and B.
1) Equation of line is x+y=2
∴x=2−y
Put this value in equation of ellipse, we get,
(2−y)2+2y2=10
∴4−4y+y2+2y2=10
∴3y2−4y+4=10
∴3y2−4y−6=0
∴y=−(−4)±√(−4)2−4×3×−62×3
∴y=4±√16+726
∴y=4±√886
∴y=4±2√226
∴y=2±√223
case 1) For y=2+√223,
x=2−2+√223
∴x=6−2−√223
∴x=4−√223
Thus, coordinates of point A are (4−√223,2+√223)
Case 2) For y=2−√223
x=2−2−√223
∴x=6−2+√223
∴x=4+√223
Thus, coordinates of point B are (4+√223,2−√223)
2) Equation of ellipse is x2+2y2=10
Dividing both sides by 10, we get,
x210+y25=1
x2(√10)2+y2(√5)2=1
∴a=√10 and b=√5
2) Equation of tangent to the ellipse from point A is given by,
xx1a2+yy1b2=1
∴x10(4−√223)+y5(2+√223)=1
∴x(4−√22)30+y(2+√22)15=1
∴x(4−√22)30+y(4+2√22)30=1
∴x(4−√22)+y(4+2√22)=30 (1)
Equation of tangent to the ellipse from point B is given by,
xx1a2+yy1b2=1
∴x10(4+√223)+y5(2−√223)=1
∴x(4+√22)30+y(2−√22)15=1
∴x(4+√22)30+y(4−2√22)30=1
∴x(4+√22)+y(4−2√22)=30 (2)
Adding equations (1) and (2), we get,
8x+8y=60
∴2x+2y=15 (3)
Subtract equation (1) from (2), we get,
∴2√22x−4√22y=0
∴x−2y=0 (4)
Adding equations (3) and (4), we get,
3x=15
∴x=5
Put this value in equation (4), we get,
∴5−2y=0
∴2y=5
∴y=52
Thus, coordinates of point of intersection of tangents is (5,52)