The correct option is
B −12Here, equation of the tangent to the parabola
y2=32x is
y=mx+8x⟶(1)[since,4a=32⇒a=8]
and it meets x2=108y
So,
x2=108(mx+8x)⇒mx2=108m2x+864⇒mx2−108m2x−864=0
If the line (1) is the tangent to the second parabola, then the roots of the above equation must be equal.
So,
(−108m2)2−4(m)(−864)=0[since,b2−4ac=0]⇒27m3+8=0⇒m3=−827⇒m=−23
Substituting the value of m in equation (1) we get,
y=−2x3+8−23⇒y=−2x−363⇒3y=−2x−36⇒2x+3y+36=0
This is the equation of the common tangent.
Now, to find the y - intercept, let x=0
∴3y+36=0⇒3y=−36⇒y=−12
Hence, the required y - intercept is −12.