The correct option is D 2z(z2−4)(z2+4)2
Given discrete-time signal
x[n]=n2nsin(n2n)u[n]
we know that,
z[sin(π2n)u[n]]=2sin(π2)z2−2zcos(π2)+1=zz2+1
Using the multiplication by exponential property,
we have
z[2nsin(π2n)u[n]]=z[sin(π2n)u[n]]∣z→(z2)⎡⎣x[n]↔x(z)anx[n]↔X(za)⎤⎦
=zz2+1∣z→z2=2zx2+4
Using differentiation in z-domain property
Z[n2nsin(π2u[n])]=−zddz{Z[n2nsin(π2n)u[n]]}⎡⎢⎣x[n]↔X(z)nx[n]↔−zddzX(z)⎤⎥⎦
=−zddz(2zz2+4)
=−z[(z2+4)(2)−2z(2z)(z2+4)2]=−z[−2x2+8(z2+4)2]
Z[n2nsin(π2n)u[n]]=2z(z2−4)(z2+4)2