The zero of the quadratic polynomial x2+(a+1)x+b are 2 and −3, then
a) a=–7,b=–1
b) a=5,b=–1
c) a=2,b=–6
c) a=0,b=–6
Let p(x)=x2+(a+1)x+b
Given that, 2 and −3 are the zeroes of the quadratic polynomial p(x)
∴ p(2)=0 and p(−3)=0,
Solving for p(2),
⇒22+(a+1)(2)+b=0
⇒4+2a+2+b=0
⇒2a+b=−6⋯(i)
Solving for p(−3),
⇒(−3)2+(a+1)(−3)+b=0
⇒9–3a–3+b=0
⇒3a–b=6⋯(ii)
On adding Eqs. (i) and (ii), we get
5a=0⇒a=0
Substituting the value of a in Eq. (i), we get
x×0+b=−6⇒b=−6
So, the required values are a=0 and b=−6.