Given,
y=eaxsinbx...(i) Diff.w.r.t.x of both sides,
⇒dydx=eax×ddx(sinbx)+sinbx×ddx(eax)
=eax×cosbx×ddx(bx)+sinbxeax×ddx(ax)
=eax×cosbxb+eaxsinbx×a
=beaxcosbx+ay...(ii)
Again, Diff.w.r.t.x of both sides,
d2ydx2=b[eax×ddx(cosbx)+cosbx×ddx(eax)]+a×dydx
b[eax(−sinbx)ddx(bx)+(cosbx)+cosbx×eax×ddx(eax)]+adydx
b{−eaxsinbx.b+eaxcosbx×a}+adydx
−b2(eaxsinbx)+a(beaxcosbx)+adydx
=−b2y+a[dydx−ay]++adydx [from (i) and (ii)]
=−b2y+adydx−a2y+adydx
=2adydx−(a2+b2)y
Hence, d2ydx2−2a dydx+(a2+b2)y=0