wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Then y=eaxsinbx solve the equation:
d2ydx22a dydx+(a2+b2)y=0

Open in App
Solution

Given, y=eaxsinbx...(i)
Diff.w.r.t.x of both sides,
dydx=eax×ddx(sinbx)+sinbx×ddx(eax)
=eax×cosbx×ddx(bx)+sinbxeax×ddx(ax)
=eax×cosbxb+eaxsinbx×a
=beaxcosbx+ay...(ii)
Again, Diff.w.r.t.x of both sides,
d2ydx2=b[eax×ddx(cosbx)+cosbx×ddx(eax)]+a×dydx
b[eax(sinbx)ddx(bx)+(cosbx)+cosbx×eax×ddx(eax)]+adydx
b{eaxsinbx.b+eaxcosbx×a}+adydx
b2(eaxsinbx)+a(beaxcosbx)+adydx
=b2y+a[dydxay]++adydx [from (i) and (ii)]
=b2y+adydxa2y+adydx
=2adydx(a2+b2)y
Hence, d2ydx22a dydx+(a2+b2)y=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon