Given: sinx+siny=sin(x+y)
⇒2sinx+y2(cosx−y2−cosx+y2)=0⇒4sinx+y2sinx2siny2=0
⇒sinx+y2=0 or sinx2=0 or siny2=0 ... (i)
Given |x|+|y|=1 .... (ii) |x|≤1 and |y|≤1
From (i) : x+y=0,x=0,y=0
Putting x=0 in (ii) : y=±1 and also putting y=0 in (ii) : x=±1
Again, putting x+y=0⇒y=−x in (ii) : 2|x|=1⇒x=±12
We get 6 pairs of (x,y) such as (0,±1),(±1,0),(12,−12),(−12,12)