The correct option is
B 21We take the numbers as a,b,c,d.
Then (the average of a, b & c)+d=29,
(the average of b,c & d)+a=23,
(the average of c, d & a)+b=21&
(the average of d, a & b)+c=17.4
So a+b+c3+d=29⟹a+b+c+3d=87..........(i),b+c+d3+a=23⟹b+c+d+3a=69..........(ii),c+d+a3+b=21⟹c+d+a+3b=63..........(iii)andd+a+b3+c=17⟹d+a+b+3c=51...........(iv).
Adding the above 4 equations,
6(a+b+c+d)=270
i.e a+b+c+d=45..............(v).
Now (v)-(i)⟶2d=42
or d=21.