The correct option is B 1210
Let the first term be a and the common difference be d.
According to given condition, we get
T1+T2+T3=321T8+T9+T10=405
Now,
T1+T2+T3=321⇒a+(a+d)+(a+2d)=321⇒a+d=107⋯(1)
Also,
T8+T9+T10=405⇒(a+7d)+(a+8d)+(a+9d)=405⇒a+8d=135⋯(2)
Solving equation (1) and (2), we get
d=4,a=103
Now, sum of all 10 terms,
S10=102[2a+9d]⇒S10=5[206+36]∴S10=1210