There are two concentric circles, each with centre O and if radii 10cm and 26cm respectively. The length of the chord AB of the outer circle which touches the inner circle at P is
A
48cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
24cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
40cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
20cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 48cm Given−OisthecentreoftwoconcentriccirclesandAB,whichisachordoftheoutercircle,touchestheinnercircleatP.Theradiusoftheinnercircleis10cmandtheradiusoftheoutercircleis26cm.Tofindout−thelengthofAB=?Solution−WejoinOP.ThenOPisaradiusthroughPwhichisthepointofcontactofABtotheinnercircle.i.ePO=10cm.AlsowejoinOA.ThenOAistheradiusoftheoutercircle=26cm.NowOP⊥AB⟹∠OPA=90osincetheradiusofacirclethroughthepointofcontactofatangenttothecircleisperpediculartothetangent.∴ΔOPAisarightonewithOAashypotenuse.So,applyingPythagorastheorem,AP=√OA2−OP2=√262−102cm=24cmButAB=2APsincetheperpendicular,droppedfromthecenterofacircletoanyofitschord,bisectsthelatter.i.ePisthemidpointofAB.∴AB=2×24cm=48cm.Ans−OptionA.