Let the first set be, a−d,a,a+d
Given, a−d+a+a+d=12⇒a=4
⇒4−d,4,4+d........(1)
Let the second set be, a−d+1,a,a+d−1
a=4⇒5−d,4,3+d..........(2)
(1)÷(2) gives,
(4−d)×4×(4+d)(5−d)×4×(3+d)=54
d2−16d2−2d−15=54
4d2−64=5d2−10d−75
d2−10d−11=0
d=11,−1
when, d=11
first set a−d,a,a+d=4−11,4,4+11
=−7,4,15
second set a−d+1,a,a+d−1=4−11+1,4,4+11−1
=−6,4,14
when, d=−1
first set a−d,a,a+d=4−(−1),4,4−1
=5,4,3
second set a−d+1,a,a+d−1=4−(−1)+1,4,4+(−1)+1
=6,4,2