∣∣ ∣∣1−252a−1042a∣∣ ∣∣=86
Applying R1→R1−2R2
∣∣ ∣∣1−250a+4−11042a∣∣ ∣∣=86
∣∣∣a+4−1142a∣∣∣=86
(a−4)2a−44=86
2a2−8a−42=86
a2−4a−21=86
(a+3)(a−7)=86
(a+3)=86
a=83
(a−7)=86
a=91
Hence, this is the answer.
If there are two values of a which makes determinant, Δ=∣∣ ∣∣1−252a−1042a∣∣ ∣∣=86, then the sum of these numbers is
(a) 4 (b) 5 (c) - 4 (d) 9