wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

There exist a triangle ABC satisfying

A
tanA+tanB+tanC=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinA2=sinB3=sinC7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a+b)2=c2+ab and 2(sinA+cosA)=3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sinA+sinB=(3+12),cosAcosB=34=sinAsinB
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
B (a+b)2=c2+ab and 2(sinA+cosA)=3
C sinA+sinB=(3+12),cosAcosB=34=sinAsinB
Option(a) SInce
tanA+tanB+tanC=tanAtanBtanC
But here, tanA+tanB+tanC=0, is impossible.
Option(b)
sinA2=sinB3=sinC7
or a2=b3=c7
a+b5=c7
a+bc=57<1
a+b<c is impossible.
Option(c)
(a+b)2=c2+ab
a2+b2+2ab=c2+ab
a2+b2c2=ab
a2+b2c22ab=12
cosC=12
C=1200
and 2(sinA+cosA)=3
2[2(12sinA+12cosA)]=3
We know that sinπ4=cosπ4=12
2[sin(A+π4)]=3
[sin(A+π4)]=32
[sin(A+π4)]=sinπ3
A+π4=π3
A=π3π4=π12 is possible.
Option(d)
sinA+sinB=3+12 ................(1)
and cosAcosB=34=sinAsinB
cosAcosBsinAsinB=3434=0
cos(A+B)=0
A+B=π2
B=π2A
From eqn(1)
sinA+cosA=3+12
2[sinA12+cosA12]=3+12
We know that sinπ4=cosπ4=12
2[sinAcosπ4+cosAsinπ4]=3+12
sin(A+π4)=3+122
sin(A+π4)=sin5π12
A+π4=5π12
A=5π12π4=π6
B=π2A=π2π6=2π6=π3
Thus, C=π2 is possible.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon