The correct options are
B (a+b)2=c2+ab and √2(sinA+cosA)=√3
C sinA+sinB=(√3+12),cosAcosB=√34=sinAsinB
Option(a) SInce
tanA+tanB+tanC=tanAtanBtanC
But here, tanA+tanB+tanC=0, is impossible.
Option(b)
sinA2=sinB3=sinC7
or a2=b3=c7
⇒a+b5=c7
⇒a+bc=57<1
∴a+b<c is impossible.
Option(c)
(a+b)2=c2+ab
⇒a2+b2+2ab=c2+ab
⇒a2+b2−c2=−ab
⇒a2+b2−c22ab=−12
⇒cosC=−12
∴∠C=1200
and √2(sinA+cosA)=√3
⇒√2[√2(1√2sinA+1√2cosA)]=√3
We know that sinπ4=cosπ4=1√2
⇒2[sin(A+π4)]=√3
⇒[sin(A+π4)]=√32
⇒[sin(A+π4)]=sinπ3
⇒A+π4=π3
∴A=π3−π4=π12 is possible.
Option(d)
∵sinA+sinB=√3+12 ................(1)
and cosAcosB=√34=sinAsinB
∴cosAcosB−sinAsinB=√34−√34=0
⇒cos(A+B)=0
⇒A+B=π2
∴B=π2−A
From eqn(1)
sinA+cosA=√3+12
⇒√2[sinA1√2+cosA1√2]=√3+12
We know that sinπ4=cosπ4=1√2
⇒√2[sinAcosπ4+cosAsinπ4]=√3+12
⇒sin(A+π4)=√3+12√2
⇒sin(A+π4)=sin5π12
⇒A+π4=5π12
⇒A=5π12−π4=π6
∴B=π2−A=π2−π6=2π6=π3
Thus, ∠C=π2 is possible.