The correct option is C (a+b)2=c2+ ab and √2(sinA+cosA)=√3
→tanA+tanB+tanC=tanAtanBtanC
→sinA2=sinB3=sinC7
∴a=2k,b=3k,c=7k
a+b>c (which is not happening in-thing case)
→a+b>c
→a2+b2+2ab=c2+ab
a2+b2−c2ab=−1
−12=a2+b2−c22ab
∴cosC=−12
c=2π3
∴A+B=π3
sin2A+cos2A+2sinAcosA=32
1+sin2A=32
sin2A=12
2A=π6
A=π12