There is no triangle ABC satisfying (a+b)2=c2+ab and sinA+sinB+sinC=1+√32.
A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B False (a+b)2=c2+ab ⇒a2+b2+2ab−c2−ab=0 ⇒a2+b2−c2=−ab Divide both sides by 2ab we get ⇒a2+b2−c22ab=−12 ⇒cosC=a2+b2−c22ab=−12 ⇒C=1800−600=1200 ∴sinA+sinB+sinC=1+√32. (given) ⇒sinA+sinB+sin1200=1+√32. from above ⇒sinA+sinB+sin(1800−600)=1+√32. ⇒sinA+sinB+sin600=1+√32 ⇒sinA+sinB+√32=1+√32 ⇒sinA+sinB=1 ⇒2sin(A+B2)cos(A−B2)=1 ⇒2sin(π2−C2)cos(A−B2)=1 since A+B+C=π ⇒2cos(C2)cos(A−B2)=1 ⇒2cos(12002)cos(A−B2)=1 since ∠C=1200 ⇒2cos600cos(A−B2)=1 ⇒2×12cos(A−B2)=1 ⇒cos(A−B2)=1=cos00 ⇒A−B2=0 ⇒A−B=0 or A=B Since A+B+C=1800 ⇒A+B=1800−1200=600 From above we have A=B 2A=2B=600 A=B=300 and hence such triangle is possible.