The correct option is
A p−r1−q+sGiven a biquadratic equation
x4−px3+qx2−rx+s=0
Let tanA,tanB,tanC and α be its roots
⇒A+B+C=π
⇒A+B=π−C
⇒tan(A+B)=tan(π−C)=−tanC
⇒tanA+tanB1−tanAtanB=−tanC
⇒tanA+tanB=−tanC(1−tanAtanB)
⇒tanA+tanB=−tanC+tanAtanBtanC
⇒tanA+tanB+tanC=tanAtanBtanC
Let tanA=a,tanB=b,tanC=c
Sum of the roots=α+a+b+c=p
Sum of the roots taken two at a time=α(a+b+c)+ab+bc+ca=q
Sum of the roots taken two at a time=α(ab+bc+ca)+abc=r
Sum of the roots taken all at a time=αabc=s
Now,tanA+tanB+tanC=tanAtanBtanC
⇒a+b+c=abc=k(say)
Consider α+a+b+c=p
⇒α+k=p
Consider α(a+b+c)+ab+bc+ca=q
⇒αk+ab+bc+ca=q
⇒ab+bc+ca=q−αk
Consider αabc=s
⇒αk=s
⇒ab+bc+ca=q−s
Consider the Sum of the roots taken two at a time=α(ab+bc+ca)+abc=r
⇒α(q−s)+k=r where ab+bc+ca=q−s
⇒α=r−kq−s
Again,consider the Sum of the roots=α+a+b+c=p
⇒α+k=p
⇒k=p−α
Now,α(ab+bc+ca)+k=r
⇒α(q−s)+k=r
⇒α(q−s)+p−α=r where k=p−α
⇒α(q−s−1)=r−p
∴α=p−r1−q+s