θ ∈ [0, 2π] and z1,z2,z3 are three complex numbers such that they are collinear and
(1+|sinθ|)z1 + (|cosθ|−1)z2 - √2z3 =0. If at least one of the complex numbers z1,z2,z3 is
non-zero then number of possible values of θ is
4
If z1,z2,z3 are collinear and az1+bz2+cz3 = 0 then a + b + c = 0. Hence
1 + |sinθ| + |cosθ| - 1 - √2 = 0 ⇒ |sinθ| + |cosθ| = √2
⇒ θ = π4, 3π4, 5π4, 7π4