The correct options are
A 1
B -2
θ=tan−1(2tan2θ)−tan−1(13tanθ)⇒θ=tan−1⎛⎜
⎜
⎜⎝2tan2θ−13tanθ1+(2tan2θ)(13tanθ)⎞⎟
⎟
⎟⎠⇒tanθ=2tan2θ−13tanθ1+(23tan3θ)⇒tanθ⎛⎜
⎜
⎜⎝2tanθ−131+(23tan3θ)−1⎞⎟
⎟
⎟⎠=0
⇒tanθ=0 or 2tanθ−131+(23tan3θ)−1=0
2tanθ−131+(23tan3θ)=1⇒tan3θ−3tanθ+2=0⇒(tanθ−1)2(tanθ+2)=0
⇒tanθ=1 or tanθ=−2