wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

​​ Three brands A, B and C of biscuits are available in packets of 12, 15 and 21 biscuits respectively. If a shopkeepeer wants to buy an equal number of biscuits, of each brand, what is the minimum number of packets of each brand, he should buy?

Open in App
Solution

Dear Student,Number of biscuits in a packet of brand A=12Number of biscuits in a packet of brand B=15Number of biscuits in a packet of brand C=21Find the LCM of 12,15 and 2112=2×2×315=3×521=3×7Therefore, LCM=2×2×3×5×7=420So, number of biscuits of each brand should be 420.Packet of Brand A=42012=35Packet of Brand B=42015=28Packet of Brand C=42021=20Regards

flag
Suggest Corrections
thumbs-up
4
similar_icon
Similar questions
Q. The table below shows the number of packets of biscuits sold (in hundreds) by a shopkeeper in the year ending 31st March 2010. The pie charts give the sale of different brands of biscuits – A, B, C and D in percentage terms in April 2009 and March 2010.
Number of packets of biscuits sold by the shopkeeper (in the year ending on 31st March 2010):
Month Number of packets sold (in hundreds)
April 73
May 74
June 76
July 86
August 88
September 88
October 89
November 90
December 90
January 105
February 110
March 115

Q. What is the average number of packets of B biscuits sold in the year?

नीचे दी गई जानकारी को पढ़िए और इसके आगे आने वाले दो प्रश्नों के उत्तर दीजिए।
नीचे दी गयी तालिका 31 मार्च 2010 को समाप्त होने वाले वर्ष में एक दुकानदार द्वारा बेचे गए बिस्कुट के पैकेटों की संख्या (सैकड़े में) दर्शाती है। पाई चार्ट अप्रैल 2009 और मार्च 2010 में प्रतिशत के रूप में विभिन्न ब्रांडों - A, B, C और D के बिस्कुट की बिक्री को दर्शाता है। ( 31st मार्च 2010 को वर्ष के अंत में) दुकानदार द्वारा बेचे गए बिस्कुट के पैकेटो की संख्या:


Q. उक्त वर्ष में बिस्कुट B के बेचे गए पैकेटों की औसत संख्या क्या है?
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
B.2.1 How Transpiration Occurs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon