Let the three consecutive natural numbers be x, x+1 and x+2
According to the given condition,
∴ (x+1)2−[(x+2)2−x2]=60
x2+1+2x−[(x+2−x) (x+2+x)]=60
x2+2x+1−[2(2+2x)]=60
x2+2x+1−4−4x=60
x2−2x−63=0
x2−9x+7x−63=0
x(x−9)+7(x−9)=0
(x+7) (x−9)=0
∴ x=9 or -7
∴ x=9
(neglect x=−7)
∴ Numbers are 9, 10, 11.