In a parallelogram ABCD are A(1,−2,3),B(1,2,4) and C(3,3,6).Let the fourth vertex D be (x,y,z)
Midpoint of AC=(1+32,−2+32,3+62)=(42,12,92)
Midpoint of BD=(1+x2,2+y2,4+z2)
Since ABCD is a parallelogram and in a parallelogram, the diagonals bisect each other, so the mid-points of AC and BD are same,
∴(1+x2,2+y2,4+z2)=(42,12,92)
⇒1+x2=42,2+y2=12,4+z2=92
⇒x+1=4,y+2=1,z+4=9
⇒x=4−1=3,y=1−2=−1,z=9−4=5
Hence, the fourth vertex D be (3,−1,5)