In a parallelogram ABCD are A(−1,2,4),B(−3,2,1) and C(2,3,4).Let the fourth vertex D be (x,y,z)
Midpoint of AC=(−1+22,2+32,4+42)=(12,52,4)
Midpoint of BD=(−3+x2,2+y2,1+z2)
Since ABCD is a parallelogram and in a parallelogram, the diagonals bisect each other, so the mid-points of AC and BD are same,
∴(−3+x2,2+y2,1+z2)=(12,52,4)
⇒−3+x2=12,2+y2=52,1+z2=4
⇒x−3=1,y+2=5,z+1=8
⇒x=1+3=4,y=5−2=3,z=8−1=7
Hence, the fourth vertex D be (4,3,7)