In a parallelogram ABCD are A(−1,2,4),B(−3,2,1) and C(−2,−3,4).Let the fourth vertex D be
(x,y,z)
Midpoint of AC=(−1−22,2−32,4+42)=(−32,−12,4)
Midpoint of BD=(−3+x2,2+y2,1+z2)
Since ABCD is a parallelogram and in a parallelogram, the diagonals bisect each other, so the mid-points of AC and BD are same,
∴(−3+x2,2+y2,1+z2)=(−32,−12,4)
⇒−3+x2=−32,2+y2=−12,1+z2=4
⇒x−3=−3,y+2=−1,z+1=8
⇒x=−3+3=0,y=−1−2=−3,z=8−1=7
Hence, the fourth vertex D be (0,−3,7)