In a parallelogram ABCD are A(−2,3,5),B(−3,2,1) and C(3,5,1).Let the fourth vertex D be (x,y,z)
Midpoint of AC=(−2+32,3+52,5+12)=(12,82,62)
Midpoint of BD=(1+x2,2+y2,4+z2)
Since ABCD is a parallelogram and in a parallelogram, the diagonals bisect each other, so the mid-points of AC and BD are same,
∴(1+x2,2+y2,4+z2)=(12,82,62)
⇒1+x2=12,2+y2=82,4+z2=62
⇒x+1=1,y+2=8,z+4=6
⇒x=1−1=0,y=8−2=6,z=6−4=2