Three constant forces −→F1=(2^i−3^j+2^k)N,−→F2=(^i+^j−^k)N and −→F3=(3^i+^j−2^k)N displace a particle from (1,−1,2)m to (−1,−1,3)m and then to (2,3,4)m, displacement being measured in meters. Find the total work done by the forces.
A
√40J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0J
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
√50J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
24J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B0J Net force acting on particle, →F=−→F1+−→F2+−→F3 =(2^i−3^j+2^k)+(^i+^j−^k)+(3^i+j−2^k) =(6^i−^j−^k)N
Initial position of particle →xi=^i−^j+2^k
Final position of particle →xf=2^i+3^j+4^k
Net displacement of particle: →S=→xf−→xi=(2−1)^i+(3−(−1))^j+(4−2)^k =(^i+4^j+2^k)m
Hence, Net work done by all acting forces: W=→F.→S=(6^i−^j−^k).(^i+4^j+2^k)J ∴W=(6)(1)+(−1)(4)+(−1)(2)=0J