Three events A, B and C have probabilities 25,13 and 12, respectively. If,
P(A∩C)=15 and P(B∩C)=14, then find the values of P(CB) and P(A′∩C′).
Here, P(A)=25,P(B)=13,P(C)=12,P(A∩C)=15and P(B∩C)=14
∴P(CB)=P(B∩C)P(B)=1413=34and P(A′∩C′)=1−P(A∪C)=1−[P(A)+P(C)−P(A∩C)]=1−[25+12−15]=1−[4+5−210]=1−710=310