First Line: →r=λ^i,⇒x1=λ, y1=0,z1=0
Second Line: →r=μ(^i+^j),⇒x2=μ, y2=μ,z2=0
Third Line: →r=ν(^i+^j+^k),⇒x3=ν, y3=ν,z3=ν
Given that lines cut the plane x+y+z=1
So, first line cuts the plane at point λ+0+0=1⇒λ=1 so point A=(1,0,0)
Similarly second line cuts the plane at point μ+μ+0=1⇒2μ=1 so point B=(12,12,0)
and third line cuts the plane at point ν+ν+ν=1⇒3ν=1 so point C=(13,13,13)
∴ Area of triangle, △=12|−−→AB×−−→AC| where,
−−→AB=[(12−1)^i+12^j+0^k)=−12^i+12^j]
−−→AC=[(13−1)^i+13^j+13^k)=−23^i+13^j+13^k]
So, △=12∣∣
∣
∣
∣∣^i^j^k−12120−231313∣∣
∣
∣
∣∣
=12∣∣16^i−(−16)^j+(−16+26)^k∣∣
=12∣∣16^i+16^j+16)^k∣∣
=12√(16)2+(16)2+(16)2=√312
∴(12△)2=(12×√312)2=3