The correct options are
A (0,0)
C (−4,3)
D (16,8)
Equation of the parabola,
x2−8x−16y=0⇒(x−4)2=16y+16⇒(x−4)2=16(y+1)
General equation of normal (in slope form) is
(x−4)=m(y+1)−2×4m−4m3
Putting the point (7,14) in the equation of the normal,
3=15m−8m−4m3⇒4m3−7m+3=0
m=1 is a root of the equation,
(m−1)(4m2+4m−3)=0
(4m2+4m−3)=0⇒4m2+6m−2m−3=0⇒(2m+3)(2m−1)=0⇒m=−32 or 12
Coordinates of the foot will be
x−4=−2am=−8m⇒x=4−8m⇒x=−4,16,0
y+1=am2=4m2⇒y=4m2−1⇒y=3, 8,0
Hence the coordinates will be (0,0) (−4,3) and (16,8)